Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Genes (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674439

ABSTRACT

Extracardiac anomalies (ECAs) are strong predictors of genetic disorders in infants with congenital heart disease (CHD), but there are no prior studies assessing performance of ECA status as a screen for genetic diagnoses in CHD patients. This retrospective cohort study assessed this in our comprehensive inpatient CHD genetics service focusing on neonates and infants admitted to the intensive care unit (ICU). The performance and diagnostic utility of using ECA status to screen for genetic disorders was assessed using decision curve analysis, a statistical tool to assess clinical utility, determining the threshold of phenotypic screening by ECA versus a Test-All approach. Over 24% of infants had genetic diagnoses identified (n = 244/1013), and ECA-positive status indicated a 4-fold increased risk of having a genetic disorder. However, ECA status had low-moderate screening performance based on predictive summary index, a compositive measure of positive and negative predictive values. For those with genetic diagnoses, nearly one-third (32%, 78/244) were ECA-negative but had cytogenetic and/or monogenic disorders identified by genetic testing. Thus, if the presence of multiple congenital anomalies is the phenotypic driver to initiate genetic testing, 13.4% (78/580) of infants with isolated CHD with identifiable genetic causes will be missed. Given the prevalence of genetic disorders and limited screening performance of ECA status, this analysis supports genetic testing in all CHD infants in intensive care settings rather than screening based on ECA.


Subject(s)
Genetic Testing , Heart Defects, Congenital , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/diagnosis , Genetic Testing/methods , Infant, Newborn , Female , Male , Retrospective Studies , Infant , Intensive Care Units , Clinical Decision-Making
2.
Res Sq ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562732

ABSTRACT

Congenital heart disease (CHD) is the most common birth defect and a leading cause of infant mortality. CHD often has a genetic etiology and recent studies demonstrate utility in genetic testing. In clinical practice, decisions around genetic testing choices continue to evolve, and the incorporation of rapid genome sequencing (rGS) in CHD has not been well studied. Though smaller studies demonstrate the value of rGS, they also highlight the burden of results interpretation. We analyze genetic testing in CHD at two time-points, in 2018 and 2022-2023, across a change in clinical testing guidelines from chromosome microarray (CMA) to rGS. Analysis of 421 hospitalized infants with CHD demonstrated consistent genetic testing across time. Overall, after incorporation of rGS in 2022-2023, the diagnostic yield was 6.8% higher compared to 2018, and this pattern was consistent across all patient subtypes analyzed. In 2018, CMA was the most common test performed, with diagnostic results for CHD in 14.3%, while in 2022-2023, rGS was the most frequent test performed, with results diagnostic for CHD in 16.9%. Additionally, rGS identified 44% more unique genetic diagnoses than CMA. This is the largest study to highlight the value of rGS in CHD and has important implications for management.

3.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38297832

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Subject(s)
De Lange Syndrome , Intellectual Disability , Humans , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Heterozygote , Intellectual Disability/genetics , Mutation , Phenotype
4.
Cardiol Young ; 34(3): 654-658, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37697673

ABSTRACT

INTRODUCTION: The NKX2.5 gene is an important cardiac developmental transcription factor, and variants in this gene are most commonly associated with CHD. However, there is an increased need to recognise associations with conduction disease and potentially dangerous ventricular arrhythmias. There is an increased risk of arrhythmia and sudden cardiac death in patients with NKX2.5 variants, an association with relatively less attention in the literature. METHODS: We created a family pedigree and reconstructed familial relationships involving numerous relatives with CHD, conduction disease, and ventricular non-compaction following the sudden death of one family member. Two informative but distantly related family members had genetic testing to determine the cause of arrhythmias via arrhythmia/cardiomyopathy gene testing, and we identified obligate genetic-positive relatives based on family relationships and Mendelian inheritance pattern. RESULTS: We identified a novel pathogenic variant in the NKX2.5 gene (c.437C > A; p. Ser146*), and segregation analysis allowed us to link family cardiac phenotypes including CHD, conduction disease, left ventricular non-compaction, and ventricular arrhythmias/sudden cardiac death. CONCLUSIONS: We report a novel NKX2.5 gene variant linking a spectrum of familial heart disease, and we also encourage recognition of the association between NKX2.5 gene and potentially dangerous ventricular arrhythmias, which will inform clinical risk stratification, screening, and management.


Subject(s)
Arrhythmias, Cardiac , Heart Defects, Congenital , Humans , Arrhythmias, Cardiac/genetics , Death, Sudden, Cardiac/etiology , Heart Defects, Congenital/complications , Heart Defects, Congenital/genetics , Heart , Cardiac Conduction System Disease
5.
J Genet Couns ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37984420

ABSTRACT

The Ehlers-Danlos syndromes (EDS), a group of uncommon connective tissue disorders, are, paradoxically, an increasingly common referral to genetics specialists. Of the 13 types of EDS, the most common is hypermobile EDS (hEDS), which lacks a known genetic etiology and for which diagnosis is achieved via a robust set of clinical criteria. While previous investigations have characterized many clinical aspects of EDS as a syndrome and patients' lived experiences, a gap in the literature exists regarding clinicians' experience caring for these individuals. This study sought to understand the effects of hEDS patient referrals from genetic counselors' perspectives. To capture these novel views and values, we conducted semi-structured interviews with 15 participants who were members of the National Society of Genetic Counselors (NSGC) and had experience working with the hEDS patient population. Interview questions explored the frequency of hEDS referrals in their clinic, investigated their roles and responsibilities as genetic counselors when working with this population, analyzed their workflow for this indication, assessed the impacts on their professional satisfaction, and explored potential options for improving workflow and care for the hEDS patient population. Reflexive thematic analysis yielded four themes: (1) Referrals for hEDS have generally increased over time and many institutions have implemented new policies to control this influx, (2) genetic counselors' primary roles include education and addressing psychosocial matters for this population, (3) genetic counselors feel both rewarded and challenged by these referrals, and (4) genetic counselors call for more education and training on hEDS for all healthcare specialties. Our findings provide a better understanding of the goals of the hEDS patient referrals to genetics specialists and the opportunities and challenges those referrals present. Genetic counselors have specific training and skills in psychosocial counseling and communication, in some ways making them ideal care providers for this population. However, they are simultaneously a scarce resource and the complex medical issues presented by many patients with hEDS make multidisciplinary management essential. We conclude with potential avenues for improving interactions with this population.

6.
medRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808847

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

7.
J Genet Couns ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872860

ABSTRACT

Genetic counseling and genetic testing are essential for individuals with congenital heart disease/defects (CHD/CHDs). However, the clinical practices of genetic counselors (GCs) and their preferences for different CHD genetic testing strategies are previously unexplored. To address these gaps, GCs (n = 112) representing diverse specialties completed an online survey regarding their counseling and testing practices for syndromic CHD and apparently isolated/non-syndromic CHDs (iCHD). We found practice variability around family screening recommendations, with prenatal respondents reporting lower prevalence of this practice for iCHDs (p = 0.0004). We found that all specialties considered chromosomal microarray (CMA) the most common prioritized genetic test for syndromic and iCHD, while more prenatal respondents considered FISH and karyotype useful for iCHDs compared to postnatal respondents (p = 0.0002 and p = 0.002, respectively). Among postnatal respondents, a higher proportion considered exome/genome sequencing as useful compared to prenatal respondents (p = 0.0159); specifically, postnatal respondents' preference for exome/genome sequencing for iCHDs was ~2.6-fold higher than prenatal respondents. We estimated participants' assessment of utility for different genetic testing modalities for iCHDs and found that prenatal respondents assigned higher mean utility to FISH (p = 0.0002), karyotype (p = 0.0006), and CMA (p < 0.0001). There were relatively moderate to decreased utility scores for gene panels and exome/genome sequencing for iCHDs compared to cytogenetic testing, across all specialties. Overall, these results provide insight into GC practices and use of various genetic testing strategies for syndromic CHDs and iCHDs. Findings may help inform and/or standardize clinical practices for CHD genetic testing, though additional studies are warranted.

9.
Eur J Med Genet ; 66(7): 104775, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264881

ABSTRACT

Alu elements are retrotransposons with ubiquitous presence in the human genome that have contributed to human genomic diversity and health. These approximately 300-bp sequences can cause or mediate disease by disrupting coding/splicing regions in the germline, by insertional mutagenesis in somatic cells, and in promoting formation of copy-number variants. Alu elements may also disrupt epigenetic regulation by affecting non-coding regulatory regions. There are increasing reports of apparently sporadic and inherited genetic disorders caused by Alu-related gene disruption, but Marfan syndrome resulting from Alu element insertion has not been previously described. We report a family with classic features of Marfan syndrome whose previous FBN1 genetic testing was inconclusive. Using contemporary next-generation sequencing and bioinformatics analysis, a pathogenic/disruptive Alu insertion occurring in the coding region of the FBN1 gene was identified (c.6564_6565insAlu; p. Glu2189fs) and was confirmed and specified further with Sanger sequencing. This identified the molecular basis of disease in the family that was missed using previous genetic testing technologies and highlights a novel pathogenic mechanism for Marfan syndrome. This case adds to the growing literature of Mendelian diseases caused by Alu retrotransposition, and it also shows the growing capability of genomic technologies for detecting atypical mutation events.


Subject(s)
Marfan Syndrome , Humans , Marfan Syndrome/diagnosis , Alu Elements/genetics , Epigenesis, Genetic , Mutation , Genetic Testing , Fibrillin-1/genetics
10.
Hum Mol Genet ; 32(14): 2335-2346, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37158461

ABSTRACT

FOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.


Subject(s)
Heart Defects, Congenital , Heart Septal Defects , Heterotaxy Syndrome , Transposition of Great Vessels , Humans , Male , Forkhead Transcription Factors/genetics , Heart Atria , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Transposition of Great Vessels/genetics
11.
J Pediatr ; 260: 113495, 2023 09.
Article in English | MEDLINE | ID: mdl-37211210

ABSTRACT

OBJECTIVE: To evaluate genetic evaluation practices in newborns with the most common birth defect, congenital heart defects (CHD), we determined the prevalence and the yield of genetic evaluation across time and across patient subtypes, before and after implementation of institutional genetic testing guidelines. STUDY DESIGN: This was a retrospective, cross-sectional study of 664 hospitalized newborns with CHD using multivariate analyses of genetic evaluation practices across time and patient subtypes. RESULTS: Genetic testing guidelines for hospitalized newborns with CHD were implemented in 2014, and subsequently genetic testing increased (40% in 2013 and 75% in 2018, OR 5.02, 95% CI 2.84-8.88, P < .001) as did medical geneticists' involvement (24% in 2013 and 64% in 2018, P < .001). In 2018, there was an increased use of chromosomal microarray (P < .001), gene panels (P = .016), and exome sequencing (P = .001). The testing yield was high (42%) and consistent across years and patient subtypes analyzed. Increased testing prevalence (P < .001) concomitant with consistent testing yield (P = .139) added an estimated 10 additional genetic diagnoses per year, reflecting a 29% increase. CONCLUSIONS: In patients with CHD, yield of genetic testing was high. After implementing guidelines, genetic testing increased significantly and shifted to newer sequence-based methods. Increased use of genetic testing identified more patients with clinically important results with potential to impact patient care.


Subject(s)
Genetic Testing , Heart Defects, Congenital , Humans , Infant, Newborn , Retrospective Studies , Cross-Sectional Studies , Genetic Testing/methods , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Heart Defects, Congenital/epidemiology , Microarray Analysis
12.
Pediatrics ; 151(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36762410

ABSTRACT

OBJECTIVE: The authors of this study aimed to evaluate the use of polysomnography (PSG) in children with Down syndrome (DS) between ages 0 and 7 years, to assess the prevalence and severity of obstructive sleep apnea (OSA) and associated comorbidities, and to describe interventions used for OSA. METHODS: A retrospective cohort study was performed at Cincinnati Children's Hospital Medical Center for children with DS born between 2013 and 2019. Data were extracted from the electronic medical record, including demographics, age at PSG, PSG results, and interventions after an abnormal PSG. Statistical analysis included unadjusted bivariate association testing and multivariable logistic regression modeling to investigate associations with OSA severity. RESULTS: Among 397 patients in the cohort, 59% (n = 235) had a documented PSG and 94% (n = 221) had an abnormal study with 60% (n = 141) demonstrating moderate or severe OSA. There was an inverse relationship between age and OSA severity (P < .001). In a multiple regression model, OSA severity was associated with increased rates of failure to thrive (P < .01), aspiration (P = .02), and laryngomalacia (P < .01). After medical or surgical intervention, 73% of patients experienced the resolution of OSA or an improvement in OSA severity. CONCLUSION: In this study of pediatric patients with DS, OSA was identified most frequently in the first year of life. In addition, to prompt evaluation of symptomatic infants, our data support earlier PSG screening for patients requiring neonatal ICU care and those with feeding difficulties, airway abnormalities, and/or pulmonary hypertension given their increased risk for severe OSA.


Subject(s)
Down Syndrome , Sleep Apnea, Obstructive , Infant , Infant, Newborn , Child , Humans , Child, Preschool , Retrospective Studies , Down Syndrome/complications , Down Syndrome/epidemiology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/epidemiology , Polysomnography/adverse effects , Comorbidity
13.
J Genet Couns ; 32(3): 558-575, 2023 06.
Article in English | MEDLINE | ID: mdl-36617640

ABSTRACT

Polygenic scores (PGS) are primed for use in personalized risk assessments for common, complex conditions and population health screening. Although there is growing evidence supporting the clinical validity of these scores in certain diseases, presently, there is no consensus on best practices for constructing PGS or demonstrated clinical utility in practice. Despite these evidence gaps, individuals can access their PGS information through commercial entities, research programs, and clinical programs. This prompts the immediate need for educational resources for clinicians encountering PGS information in clinical practice. This practice resource is intended to increase genetic counselors' and other healthcare providers' understanding and comfort with PGS used in personalized risk assessments. Drawing on best practices in clinical genomics, we discuss the unique considerations for polygenic-based (1) testing, (2) clinical genetic counseling, and (3) translation to population health services. This practice resource outlines the emerging uses of PGS, as well as the critical limitations of this technology that need to be addressed before wide-scale implementation.


Subject(s)
Counselors , Genetic Counseling , Humans , Counseling , Risk Assessment , Societies
14.
J Genet Couns ; 32(2): 362-375, 2023 04.
Article in English | MEDLINE | ID: mdl-36222363

ABSTRACT

Cardiovascular genetic counseling has expanded as an established genetic counseling specialty over the last 20 years. Despite guidelines recommending genetic counseling for heritable cardiac diseases, there have been limited descriptions of the practice model types used for different clinical indications seen in this genetic counseling subspecialty. We aimed to describe current clinical practice models used by cardiovascular genetic counselors and to document practice model strengths, challenges, and areas for improvement. Genetic counselor respondents (n = 63) who self-reported seeing cardiovascular indications were recruited through the National Society of Genetic Counselors and Twitter. They completed a survey describing the types of healthcare professionals with whom they collaborate to see common cardiovascular indications, the nature of their collaboration, and their qualitative experiences with their practice models. Clinical indications addressed in this survey were hypertrophic cardiomyopathy, dilated cardiomyopathy, all other cardiomyopathies, arrhythmias, aortopathies, dyslipidemias, pulmonary arterial hypertension, and congenital heart defects. Data were analyzed using descriptive statistics and thematic analysis. We found that the composition of multidisciplinary provider practice models varies by indication, though general cardiologists were the most common collaborative provider reported. Practice models including geneticists were most common for aortopathy indications. Overall, the majority of respondents were satisfied with the practice models they reported. While a wide variety of successes, challenges, and areas for improvement of practice models were reported, collaboration, communication, and access to appropriate providers for patient care were consistent themes across these three questions. To our knowledge, this is the first description of practice models used by cardiovascular genetic counselors. The results of this study add to the knowledge of this specialty of genetic counseling and assist in understanding the needs and challenges for developing cardiovascular genetics programs and clinics.


Subject(s)
Cardiovascular Diseases , Genetic Counseling , Humans , Counselors , Health Personnel , North America , Practice Guidelines as Topic , Cross-Sectional Studies , Surveys and Questionnaires
15.
Article in English | MEDLINE | ID: mdl-36442996

ABSTRACT

Biallelic pathogenic variants in DYNC2H1 are the cause of short-rib thoracic dysplasia type III with or without polydactyly (OMIM #613091), a skeletal ciliopathy characterized by thoracic hypoplasia due to short ribs. In this report, we review the case of a patient who was admitted to the Neonatal Intensive Care Unit (NICU) of Indiana University Health (IUH) for respiratory support after experiencing respiratory distress secondary to a small, narrow chest causing restrictive lung disease. Additional phenotypic features include postaxial polydactyly, short proximal long bones, and ambiguous genitalia were noted. Exome sequencing (ES) revealed a maternally inherited likely pathogenic variant c.10322C > T p.(Leu3448Pro) in the DYNC2H1 gene. However, there was no variant found on the paternal allele. Microarray analysis to detect deletion or duplication in DYNC2H1 was normal. Therefore, there was insufficient evidence to establish a molecular diagnosis. To further explore the data and perform additional investigations, the patient was subsequently enrolled in the Undiagnosed Rare Disease Clinic (URDC) at Indiana University School of Medicine (IUSM). The investigators at the URDC performed a reanalysis of the ES raw data, which revealed a paternally inherited DYNC2H1 deep-intronic variant c.10606-14A > G predicted to create a strong cryptic acceptor splice site. Additionally, the RNA sequencing of fibroblasts demonstrated partial intron retention predicted to cause a premature stop codon and nonsense-mediated mRNA decay (NMD). Droplet digital RT-PCR (RT-ddPCR) showed a drastic reduction by 74% of DYNCH2H1 mRNA levels. As a result, the intronic variant was subsequently reclassified as likely pathogenic resulting in a definitive clinical and genetic diagnosis for this patient. Reanalysis of ES and fibroblast mRNA experiments confirmed the pathogenicity of the splicing variants to supplement critical information not revealed in original ES or CMA reports. The NICU and URDC collaboration ended the diagnostic odyssey for this family; furthermore, its importance is emphasized by the possibility of prenatally diagnosing the mother's current pregnancy.


Subject(s)
Polydactyly , Short Rib-Polydactyly Syndrome , Female , Humans , Infant, Newborn , Pregnancy , Cytoplasmic Dyneins/genetics , Exome Sequencing , Mutation , Ribs , RNA, Messenger , Short Rib-Polydactyly Syndrome/diagnosis , Short Rib-Polydactyly Syndrome/genetics
16.
J Am Heart Assoc ; 11(19): e026369, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36172937

ABSTRACT

Background Our cardiac center established a systematic approach for inpatient cardiovascular genetics evaluations of infants with congenital heart disease, including routine chromosomal microarray (CMA) testing. This provides a new opportunity to investigate correlation between genetic abnormalities and postoperative course. Methods and Results Infants who underwent congenital heart disease surgery as neonates (aged ≤28 days) from 2015 to 2020 were identified. Cases with trisomy 21 or 18 were excluded. Diagnostic genetic results or CMA with variant of uncertain significance were considered abnormal. We compared postoperative outcomes following initial congenital heart disease surgery in patients found to have genetic abnormality to those who had negative CMA. Among 355 eligible patients, genetics consultations or CMA were completed in 88%. A genetic abnormality was identified in 73 patients (21%), whereas 221 had negative CMA results. Genetic abnormality was associated with prematurity, extracardiac anomaly, and lower weight at surgery. Operative mortality rate was 9.6% in patients with a genetic abnormality versus 4.1% in patients without an identified genetic abnormality (P=0.080). Mortality was similar when genetic evaluations were diagnostic (9.3%) or identified a variant of uncertain significance on CMA (10.0%). Among 14 patients with 22q11.2 deletion, the 2 mortality cases had additional CMA findings. In patients without extracardiac anomaly, genetic abnormality was independently associated with increased mortality (P=0.019). CMA abnormality was not associated with postoperative length of hospitalization, extracorporeal membrane oxygenation, or >7 days to initial extubation. Conclusions Routine genetic evaluations and CMA may help to stratify mortality risk in severe congenital heart disease with syndromic or nonsyndromic presentations.


Subject(s)
Chromosome Aberrations , Heart Defects, Congenital , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Heart Defects, Congenital/surgery , Humans , Infant , Infant, Newborn , Microarray Analysis/methods
17.
J Community Genet ; 13(4): 449-458, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35794442

ABSTRACT

The COVID-19 pandemic required genetic counseling services, like most outpatient healthcare, to rapidly adopt a telemedicine model. Understanding the trends in patients' preferences for telemedicine relative to in-person service delivery both before and after the advent of the COVID-19 pandemic may aid in navigating how best to integrate telemedicine in a post-COVID-19 era. Our study explored how respondents' willingness to use, and preference for, telemedicine differed from before to after the onset of the COVID-19 pandemic. Respondents included patients, or their parent/guardian, seen in a general medical genetics clinic in 2018, prior to the COVID-19 pandemic, and in 2021, during the COVID-19 pandemic. Respondents were surveyed regarding their willingness to use telemedicine, preference for telemedicine relative to in-person care, and the influence of various factors. Among 69 pre-COVID-19 and 40 current-COVID-19 respondents, there was no shift in willingness to use, or preference for, telemedicine across these time periods. About half of respondents (50.6%) preferred telemedicine visits for the future. Of the 49.4% who preferred in-person visits, 79.1% were still willing to have visits via telemedicine. Predictors of these preferences included comfort with technology and prioritization of convenience of location. This study suggests that a hybrid care model, utilizing telemedicine and in-person service delivery, may be most appropriate to meet the needs of the diverse patients served. Concern for COVID-19 was not found to predict willingness or preference, suggesting that our findings may be generalizable in post-pandemic contexts.

18.
Genet Med ; 24(10): 2051-2064, 2022 10.
Article in English | MEDLINE | ID: mdl-35833929

ABSTRACT

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Repressor Proteins , Tooth Abnormalities , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Proteasome Endopeptidase Complex/genetics , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Transcription Factors/genetics
19.
Article in English | MEDLINE | ID: mdl-35091507

ABSTRACT

IGF1R-related disorders are associated with intrauterine growth restriction (IUGR), postnatal growth failure, short stature, microcephaly, developmental delay, and dysmorphic facial features. We report a patient who presented to medical genetics at 7 mo of age with a history of IUGR, poor feeding, mild developmental delays, microcephaly, and dysmorphic facial features. Whole-exome sequencing revealed a novel c.1464T > G p.(Cys488Trp) variant in the IGF1R gene, initially classified as a variation of uncertain significance (VUS). We enrolled the patient in the URDC (Undiagnosed Rare Disease Clinic) and performed additional studies including deep phenotyping and familial segregation analysis, which demonstrated that the patient's IGF1R VUS was present in phenotypically similar family members. Furthermore, biochemical testing revealed an elevated serum IGF-1 level consistent with abnormal IGF-1 receptor function. Workup resulted in the patient's variant being upgraded from a VUS to likely pathogenic. Our report expands the variant and phenotypic spectrum of IGF1R-related disorders and illustrates benefits and feasibility of reassessing a VUS beyond the initial molecular diagnosis by deep phenotyping, 3D modeling, additional biochemical testing, and familial segregation studies through the URDC, a multidisciplinary clinical program whose major goal is to end the diagnostic odyssey in patients with rare diseases.


Subject(s)
Microcephaly , Rare Diseases , Abnormalities, Multiple , Feasibility Studies , Female , Fetal Growth Retardation/genetics , Growth Disorders/genetics , Heterozygote , Humans , Microcephaly/genetics , Pregnancy , Receptor, IGF Type 1/genetics
20.
J Genet Couns ; 31(2): 479-488, 2022 04.
Article in English | MEDLINE | ID: mdl-34570930

ABSTRACT

For the past two decades, the guidelines put forth by the American College of Medical Genetics and Genomics (ACMG) detailing providers' clinical responsibility to recontact patients have remained mostly unchanged, despite evolving variant interpretation practices which have yielded substantial rates of reclassification and amended reports. In fact, there is little information regarding genetic counselors' roles in informing patients of reclassified variants, or the process by which these amended reports are currently being handled. In this study, we developed a survey to measure current experiences with amended variant reports and preferences for ideal management, which was completed by 96 genetic counselors from the United States and Canada. All respondents indicated they were the individuals responsible for disclosing initial positive genetic testing results and any clinically actionable reclassified variant reports, and over half (56%) received at least a few amended variant reports each year. Nearly a quarter (20/87) of respondents reported having a standard operating procedure (SOP) for managing amended reports and all were very satisfied (12/20) or satisfied (8/20) with the SOP. Of those without a protocol, 76% (51/67) would prefer to have an SOP implemented. Respondents reported a preference for (1) laboratories to send amended variant reports directly to the genetic counselor or ordering physician through email or an online portal, and (2) notification to patients ideally occurring through a phone call. In the event that the original genetic counselor is inaccessible, respondents reported a preference for reports to be sent directly to another genetic counselor (36%) on the team or the clinic in general (27%). Information from this study provides insight into the current practices of genetic counselors as applied to amended reports and what improvements may increase the efficiency of the reporting process. Moreover, these results suggest a need for an updated statement addressing duty to recontact, specifically as it applies to amended variant reports.


Subject(s)
Counselors , Duty to Recontact , Genetic Counseling/methods , Genetic Testing , Humans , Surveys and Questionnaires , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...